Intra-day Bitcoin Price Prediction with Machine Learning and Ensemble Methods

John Tsang

University of Ottawa

Fall 2021

MAT 4900 - Undergraduate Research Project

Outline

- 1 Introduction
- Predictors
- 3 Stage 1
- 4 Stage 2
- **6** Further Discussion
- **6** Summary of Results
- Reflections

John Tsang

 Introduction
 Predictors
 Stage 1
 Stage 2
 Further Discussion
 Summary of Results
 Reflections

 ●00000
 00
 00
 00000
 0
 00000
 0
 00000
 0
 00000
 0
 0
 00000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Introduction: Project Goal

Project Goal:

Predict the average Bitcoin prices on Coinbase from August 5th, 2021 to August 31st, 2021 for every five-minute interval.

Introduction: Highlights

Introduction

000000

- The performance of some basic machine learning models to forecast intra-day Bitcoin price
- Can ensemble methods improve the forecasting performance?
- Is there other possible approaches to improve the forecasting performance?
- Lessons I learnt from this project

John Tsang

Introduction: Stage 1

Stage 1: One-step ahead Predictions with Base Models

- 1 the random walk (RW) model
- 2 the linear regression (LR) model
- 3 the support vector regression (SVR)
- 4 the k-nearest neighbour regression (k-NN)
- 5 the decision tree regression (DT)

Introduction: Stage 2

Stage 2: Use Ensemble Methods to Improve Predictions

- Stacking
- Random Forest
- Bagging

Introduction: Forecast Evaluation Criteria

1. Forecast Accuracy: Mean Absolute Percentage Error (MAPE)

$$\mathsf{MAPE} = \frac{1}{T} \sum_{t=1}^{T} \left| \frac{\mathsf{Predicted Value}_{t} - \mathsf{Actual Value}_{t}}{\mathsf{Actual Value}_{t}} \right|$$

2. Direction Accuracy

The relative frequency (in %) of correctly predicting the direction of changes in Bitcoin prices

Introduction

000000

Introduction: Forecast Evaluation Criteria

3. Profitability: "buy low, sell high"

If the magnitude of the predicted Bitcoin price change in the next period is more than 1.0%, there will be a transaction.

- ullet Predicts Bitcoin price $\uparrow \Longrightarrow$ purchase 1 Bitcoin \Longrightarrow Sell 1 Bitcoin in the next period
- ullet Predicts Bitcoin price $\downarrow \Longrightarrow$ sell 1 Bitcoin \Longrightarrow Buy 1 Bitcoin in the next period

Average Rates of Return=Simple arithmetic average of the rates of return of all transactions

Predictors: Traditional Demand- and Supply-side Factors

	Predictor	Frequency
1.	Moving Average Bitcoin Prices	5, 10, 30 and 60 minutes
2.	Moving Averages of Total Bitcoin	5, 10, 30 and 60 minutes
	Transaction Volume	
3.	Percentage of the Volume of Buy	5, 10, 30 and 60 minutes
	Transactions	
4.	Change in Daily Close Nasdaq	Daily
	Bitcoin Reference Price (NQBTC)	

Predictors: Social Media-related Variables (Daily)

Google Trends: Web & News Searches

Google Trends: YouTube Searches

New Posts & # New Comments

New Pageviews

New Tweets

Stage 1: Methodology I

Input: Rolling window size $w_R > 0$; a list of hyperparameters k-list $\neq \emptyset$

 $\textbf{Input} : \, \mathtt{model} \in [\mathsf{LR}, \mathsf{SVR}, \mathit{k}\text{-}\mathsf{NN}, \mathsf{DT}]$

Output: A list for storing each prediction prediction

foreach rolling window R = (x, y) of size w_R (Figure 1) **do**

Initialize dictionary error_dict[] as a list for each key k in k-list

foreach training set T_R and test set $t_R = (\mathbf{x}_{t_R}, y_{t_R})$ in R do

foreach k in k-list do

 $\texttt{fitted-model} \leftarrow \mathsf{the} \; \mathsf{model} \; \mathsf{fitted} \; \mathsf{with} \; T_R \; \mathsf{and} \; k$

$$y_k \leftarrow \text{prediction from fitted-model using } \boldsymbol{x}_{t_R}$$
 abs-pct-error $\leftarrow \left| \frac{y_k - y_{t_R}}{y_k} \right|$

|
$$y_{t_R}$$
 |
Append the list error_dict[k] with abs-pct-error

,

end

end

optimal-k \leftarrow the key k where $\min_k \operatorname{average}(\operatorname{error_dict}[k])$

 $\mathtt{fitted}\mathtt{-model} \leftarrow \mathtt{the} \ \mathtt{model} \ \mathsf{fitted} \ \mathsf{with} \ \mathit{R} \ \mathsf{and} \ \mathsf{optimal-k}$

 $y_{\mathtt{optimal-k}} \leftarrow \mathtt{prediction} \ \mathsf{from} \ \mathsf{fitted-model} \ \mathsf{using} \ \mathsf{the} \ \mathsf{last}$

observation's **x**

Append the list prediction with $y_{optimal-k}$

end
John Tsang

Reflections

Stage 1: Methodology II

Figure 1: Illustration of the Rolling Window Strategy

In the first rolling window,

Stage 1: Forecast Evaluation Results

Figure 2: Stage 1 Forecast Evaluation Results, per cent

Methodology: Stage 2

Stacking

Feed predictions from Stage 1 as predictors to each base model for prediction

Bagging

A prediction is the average of predictions from each model trained on each bootstrap sample

• Bagged linear regression: use LASSO to avoid extreme predictions

Random Forest

Bagged decision tree + random choice of predictors

Results: Stage 2

	MAPE	DA	Profitability
(a) Stacking:			
k-NN	0.2	46.71	0.1500
DT	0.8	49.68	0.0113
SVR	1.5	49.67	-0.0026
LR	0.2	43.84	0.0289
(b) Bagging:			
k-NN	0.2	50.50	-0.0220
DT	8.0	49.80	0.0130
SVR	1.6	49.95	0.0055
LR with LASSO	0.2	46.64	-0.1428
(c) Random Forest	0.3	49.81	0.0376

Further Discussion: Trend Changes

Figure 3: MA Bitcoin Price Every 5 Minutes, Aug 1 - Aug 31 2021

Two Trend changes:

- the 153rd five-minute interval on August 5
- the 166rd five-minute interval on August 19

Further Discussion: Trend Changes

Forecast Evaluation: Entire Timeframe - Periods without the Breaks

	MAPE	DA	Profitability
Stage 1			
KNN	0.0	0.1	0.2468
DT	-0.2	0.2	0.0000
SVR	-0.4	0.3	-0.0040
LR	0.0	-0.3	-0.1050
Stage 2			
(a) Stacking			
KNN	0.0	0.1	0.0482
DT	-0.2	0.1	-0.0003
SVR	-0.2	0.2	0.0042
LR	-0.0	-0.1	-0.1233
(b) Bagging			
k-NN	0.0	0.5	0.1286
DT	-0.3	0.1	-0.0045
SVR	-0.4	0.3	0.0040
LR with LASSO	0.0	0.0	-0.1803
(c) Random Forest	0.0	-0.1	0.0000

Further Discussion: Using Subsets of Predictors

- Group 1: the last 5-minute, 10-minute, 30-minute and 60-minute moving average Bitcoin prices and the daily change in the close Nasdaq Bitcoin Reference price (NQBTC)
 - Most relevant to forecast accuracy and profitability
- Group 2: the last 5-minute moving average Bitcoin prices
 - Most relevant to forecast accuracy and profitability
 - Using only Group 2 can achieve good forecast accuracy and profitability at the expense of some directional accuracy

Further Discussion: Using Subsets of Predictors

- **Group 3**: moving average total Bitcoin transaction volumes and percentages of the volume of buy transaction for the last 5-minute, 10-minute, 30-minute and 60-minute intervals
 - Most relevant to directional accuracy

Further Discussion: Replacing Standard Bootstrap

- Use a modified version of the standard bootstrapping to account for serial dependence:
 - the seasonal-trend decomposition using locally estimated scatterplot smoothing (STL decomposition)
 - the moving block bootstrap
- Improves profitability of bagged k-NN (-0.07% to 0.003%) and bagged DT models (-0.01% to 0.003%)

Summary: Research Results

- The performance of some basic machine learning models to forecast intra-day Bitcoin price
- Can ensemble methods improve the forecasting performance?
- Is there other possible approaches to improve the forecasting performance?

Lessons Learnt

Aside from learning more about machine learning and ensemble methods, I learnt two main lessons about working on a project with a large data size:

- Lesson 1: Always write scalable programs
- Lesson 2: Plan computational time ahead

Also, this is my first set of slides in LATEX!

Lessons 1: Always Write Scalable Program

One processor:

Multiple processors:

Total Runtime =
$$S + 5T$$

Total Runtime =
$$S + T$$

Modified from: https://skirt.ugent.be/skirt8/_parallel_performance.html

Lessons 2: Plan Computational Time Ahead

Virtual machine 1:

Virtual machine 2:

Lessons 2: Plan Computational Time Ahead

Virtual machine 3:

